Integral Non-hyperbolike Surgeries

نویسنده

  • KAZUHIRO ICHIHARA
چکیده

It is shown that a hyperbolic knot in the 3-sphere admits at most nine integral surgeries yielding 3-manifolds which are reducible or whose fundamental groups are not infinite word-hyperbolic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Links with No Exceptional Surgeries

We show that if a knot admits a prime, twist-reduced diagram with at least 4 twist regions and at least 6 crossings per twist region, then every non-trivial Dehn filling of that knot is hyperbolike. A similar statement holds for links. We prove this using two arguments, one geometric and one combinatorial. The combinatorial argument further implies that every link with at least 2 twist regions ...

متن کامل

Non-integral Toroidal Dehn Surgeries

If we perform a non-trivial Dehn surgery on a hyperbolic knot in the 3-sphere, the result is usually a hyperbolic 3-manifold. However, there are exceptions: there are hyperbolic knots with surgeries that give lens spaces [1], small Seifert fiber spaces [2], [5], [7], [20], and toroidal manifolds, that is, manifolds containing (embedded) incompressible tori [6], [7]. In particular, Eudave-Muñoz ...

متن کامل

All Exceptional Surgeries on Alternating Knots Are Integral Surgeries

We show that all exceptional surgeries on hyperbolic alternating knots in the 3-sphere are integral surgeries.

متن کامل

On Knot Floer Homology and Lens Space Surgeries

In an earlier paper, we used the absolute grading on Heegaard Floer homology HF to give restrictions on knots in S which admit lens space surgeries. The aim of the present article is to exhibit stronger restrictions on such knots, arising from knot Floer homology. One consequence is that all the non-zero coefficients of the Alexander polynomial of such a knot are ±1. This information in turn ca...

متن کامل

The Culler-shalen Seminorms of the (−3, 3, 4) Pretzel Knot

We describe a method to compute the Culler-Shalen seminorms of a knot, using the (−3, 3, 4) pretzel knot as an illustrative example. We deduce that the SL2(C)-character variety of this knot consists of three algebraic curves and that it admits no non-trivial cyclic or finite surgeries. We also summarize similar results for other (−3, 3, n) pretzel knots including the observation that the Seifer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004